

Air Permitting and Compliance

- * How to conduct a facility-wide PTE Emissions Inventory
- * Emission Calculation Strategies

July 20, 2023

Who & How to conduct an emissions inventory

Who: Under state and federal regs, it is the business owner's responsibility to obtain an air pollution permit for **all** air contaminant sources.

How do I know if I have an air contaminant source? Ohio EPA recommends 4 rules of thumb:

1. Equipment that has a stack, dust collector, or vent.

2. A process that uses paints, solvents, adhesives, or inks.





3. A process that burns a fuel (e.g., oil, natural gas, or coal)



4. A process that produces visible dust, odors, or smoke.

6

Now you have you have an air contaminant source inventory – *What Next?*

- 1. Gather data from each emission source and determine if they contain any of the 6 "Criteria Pollutants" on the National Ambient Air Quality Standards (NAAQS)
 - SDS; VOC sheets; gas usage; current air permits issued to the facility; performance test results (stack tests, raw materials,etc.); capture and control efficiency of pollution control equipment (RTO, baghouse, etc.); vendor literature describing the process

ArdaghMetalPackaging

How to conduct an emissions inventory

- 2. Identify legally enforceable limitations
 - 3. Identify the emission calculation methods you will use.

EXAMPLE: PTE Calculations Using MASS BALANCE

Small Business, Inc. has maintenance booth with a single spray gun. The gun capacity is 5 gallons per hour. The coating contains 65 percent VOC by weight and its density is 11.2 lbs/gal.

- VOC content = (11.2 lbs coating/gal) x (0.65 lbs VOC/lb coating) = 7.28lbs VOC/gal coating
- Maximum operating hours/yr = 8,760

Annual Potential Emission of VOCs

(5 gal coating/hr) x (7.28 lbs VOC/gal of coating) = 36.4 lbs of VOC/hr (36.4 lbs VOC/hr) x (8,760 hrs/yr) = 318,864 lbs of VOC/yr (318,864 lbs VOC/yr) x (1 ton/2,000 lbs) = **159.4 tons of VOC/yr**

EXAMPLE: PTE Calculations Using EMISSION FACTORS

Small Business, Inc. has a natural gas-fired boiler rated at 10 million Btu per hour. The NOx Emission Factor from Table 1.4-1 in Chapter 1.4 of AP-42 (see figure 2-3 above) is 100 pounds of NOx emitted per million scf of natural gas burned. In addition to NOx emissions the company would also use emission factors to calculate CO, SO₂, PM, and VOC emissions.

1 scf of natural gas = 1,020 Btu
Maximum operating hours/yr = 8,760

Annual Potential Emission of NOx:

 $\begin{array}{l} (10,000,000 \; Btu/hr) \ x \ (1 \; scf of \; fuel/1,020 \; Btu) = 9,803.9 \; scf of \; natural \; gas/hr \\ (9,803.9 \; scf \; natural \; gas/hr) \ x \ (8,760 \; hrs/yr) = 85,882,352.9 \; scf of \; natural \; gas/yr \\ (85,882,352.9 \; scf of \; natural \; gas/yr \\ (85,882,352.9 \; scf of \; natural \; gas/yr \\ (85,882,150 \; scf) \ x \ (100 \; bs \; of \; NOx/1,000,000 \; scf \; of \; tuel) = 8,588.2 \; lbs \; of \; NOx/yr \\ (85,882,150 \; scf) \ x \ (100 \; scf) \ (100 \; scf) \ x \ (1$

EXAMPLE: PTE Calculations Using PERFORMANCE TEST DATA

Data from a stack test at **Small Business, Inc.** indicates that the actual air flow rate of the exhaust fan on the unpermitted metal parts grinder is 29,000 scf per minute. The emission source is subject to Rule 331, which limits PM emissions to 0.10 pounds of PM per 1,000 pounds of exhaust gas.

- 1 scf air = 0.075 pounds.
- Maximum operating hours/yr = 8,760
- Annual Potential Emissions of PM

 $(29,000 \text{ scf of air/min}) \times (60 \text{ min/hr}) \times (0.075 \text{ lbs of air/1 scf of air}) = 130,500 \text{ lbs of air/hr} (130,500 \text{ lbs of air/hr}) \times (0.10 \text{ lbs of PM/1,000 lbs of air}) = 13.05 \text{ lbs of PM/hr} (13.05 \text{ lbs PM/hr}) \times (8,760 \text{ hrs/yr}) \times (1 \text{ ton/2,000 lbs}) =$ **57.0 \text{ tons PM/yr}**

4. Determine if any of the air contaminant sources are De minimis, permanent exemptions or permit-by-rule provision.

What is De minimis? See OAC rule 3745-15-05

Emission sources that meet two conditions:

8

- 1. Emit less than 10#/day of any air contaminant
- 2. < 1 ton/ year (2,000 pounds) of any hazardous air pollutant or combination of hazardous air pollutants

How to conduct an emissions inventory

What may fall under Permanent Exemptions? See OAC rule 3745-31-03(B)(1) These are sources that have minimal emissions or meet certain size criteria.

What is Permit-by-rule provision? See OAC rule 3745-31-30 This applies to certain types of low-emitting sources.

How to conduct an emissions inventory

Determine best way to collect and display your emissions calculations

- Before you begin calculating the emissions design what you want on a simple piece of paper.
 - You want something that is brief, easy to follow by all technical levels and adaptable to business changes and needs.
 - Know you audience: accounting, business managers, EPA associates, air program manager.
 - Design something that can be completed easily in your absence
 - Design something that can be updated easily
 - Know your business inputs and needs

Make it simple, Make it smart

= greater than 80% of permit limit = Permit limit exceedance

CAN LINES (K004-K008)

Control Efficiencies Coating/Oven Capture Efficiency

Coating/Oven Capture
Ink Capture Efficiency
Destruction Efficiency

80% by weight Uncaptured VOC are assumed to be captured by general building ventilation and emitted throug 80% by weight Uncaptured VOC are assumed to be captured by general building ventilation and emitted throug 99% by weight

-			
	Can	Cur	face A
	Call	Jun	ale A

Can Surface Areas	
Surface Area For Standard 12 Oz. Cans	44.02 in ²
Surface Area For 16 Oz. Cans	55.25 in ²
Surface Area For 19.2 Oz. Cans	65.15 in ²
Surface Area For 12.1 Oz. Sleek Cans	47.22 in ²

Monthly Production (While RTO is Operating)

					Monthly Produ	uction While R	TO is Operating	g (cans/mont
Production Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Lines 1 & 2 Production (12 Oz. Standard) K004(L1) K005(L2)	98,965,101	96,819,766	92,157,212	59,527,309	56,378,548	0	0	0
Lines 1 & 2 Production (16 Oz.) K004(L1) K005(L2)	0	0	0	0	0	0	0	0
Line 3 Production (16 Oz.) K006(L3)	0	0	0	0	0	0	0	0
Line 3 Production (19.2 Oz.) KOOG(L3)	0	0	8,435,076	22,382,282	28,817,120	0	0	0
Lines 4 & 5 Production (12.1 Oz. Sleek) K007(L4) K008(L5)	70,621,954	103,094,464	126,095,200	130,102,720	99,540,320	0	0	0

Monthly Production (During RTO Downtime)

					Monthly Proc	luction During	RTO Downtim	e (cans/mont
Production Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Lines 1 & 2 Production (12 Oz. Standard) K004(L1) K005(L2)	0	0	134,575		0	0	0	0
Lines 1 & 2 Production (16 Oz.) K004(L1) K005(L2)	0	0	0	0	0	0	0	0
Line 3 Production (16 Oz.) KOO6(L3)	0	0	0	0	0	0	0	0
Line 3 Production (19.2 Oz.) K006(L3)	0	0	32,667	0	0	0	0	0
Lines 4 & 5 Production (12.1 Oz. Sleek) K007(L4) K008(L5)	938,590	0	107,820	0	0	0	0	0

Inside Spray (Volume)

			10	80 5			М	onthly Materi	ial Use (gal/mor	nth)
	Description	Jan	Feb	Mar	A	pr	May	Jun	Jul	Aug
AKZONOBE	L 640C2135 / IS	25,110	28,800	28,767	32,8	863	0	0	0	0
•	Inputs> FER Input	ut Material Pro	perties	Summaries	>	FEF	Summary	Rolling	12-Month	. + :

INSIDE SPRAY												
				Mi	sterial Propert	ties						_
Description	Type of Coating	VOC Content Less Water (Ib/gal)	VOC Content (Ib/gal solids)	Coating Density (Ib/gal)	Solids Content (wt %)	Solids Content (vol %)	Solvent Content (wt %)	Water Content (wt%)	Diethylene Glycol Monoethyl Ether (DGME)	Diethylene Glycol Butyl	Diethylene Glycol Monohexyl Ether (DGHE)	
AKZONOBEL 640C2135 / IS	Inside Spray	3.48	6.8	8.45	20.7%	17.2%	13,8%	65.5%		-		-
PPG 2012823 BPAMI / 15	Inside Spray	3.5	6.9	8.4	21.0%	17.7%	14.6%	64.4%			-	
SHERWIN WILLIAMS V70038AA GEN 2.1 / IS	Inside Spray	3.2	5.8	8.44	21.1%	18.1%	12.4%	66.5%				
SHERWIN WILLIAMS V70011AA BPANI - GEN 2 / 15	Inside Spray	3.3	6.1	8.43	21.1%	18.0%	13.0%	65.9%	0.2%			

				Monthly	VOC Emis	sions (ton	(month)				Rolling, 12-Month Emission (Avg. ton/month)						
Year	Month	K001	K002	к003	K004	K005	K006	K007	KOOS	P801	End Modules	Can Lines	Clean-up Solvent				
	Jan	0.35															
	Feb	0.56															
	Mar	0.43	0.35								1						
	Apr	0.46	0.79														
	May	0.61	1.02		0.10	0.10			•	0.18	1						
2022	Jun	0.98	1.52		0.84	0.84				0.18	1						
2022	Jul	0.68	1.35		3.04	3.04			•	0.59	1						
	Aug	0.71	2.05		5.09	5.09				0.85	1						
	Sep	1.03	1.65		0.16	0.16		5.6E-03	5.6E-03	1.26							
	Oct	1.48	2.24		4.16	4.16		0.82	0.82	0.90	1						
	Nov	1.11	1.73		0.97	0.97		1.07	1.07	1.98	1						
	Dec	1.06	2.01		1.29	1.29		0.66	0.06	1.56	1						
	Jan	1.16	2.10		1.71	1.73		1.82	0.97	0.18	2.26	3.50	0.64				
	Feb	0.99	1.99	•	1.62	1.62		1.82	1.82	1.33	2.46	4.08	0.75				
	Mar	1.13	2.12		1.74	1.74	0.49	2.49	2.49	1.83	2.66	4.82	0.90				
	Apr	1.03	2.01	•	1.19	1.01	1.23	2.57	2.57	0.54	2.81	5.54	0.95				
	May	1.71	2.83						•		3.06	5.52	0.93				
					#DIV/0!	#DIV/0!	#DIV/01	#DIV/01	#DIV/0!		2.85	#DIV/0!	0.92				

Make it simple, Make it smart

					N-Butyl Acetate	123-86-4	25.00%	N	2												
V	/ideo Jet Ink	VideoJet	0.25		Methanol	67-56-1	30.00%	Y	1	1											
	Make-up Fluid Formaldehyde:	16-23450			2-Butanone (MEK) aldehyde/MMcans		70.00%	N	1	870											
	-ormaldenyde.	79 320150 MMca	ans will BC x 0.6	the formaldeb	vde/MMcan = 47.59	74954 lbs form	osldebyde pro	duced		48											
- in		10.020100 1000	113 W/ DO X 0.0	103 Ionnaiden	Juommodii - 47.55	143341031011	laidenyde pro	Total lbs	29.277	1,213											
H	Hours Operated	840						Total ton	14.64	0.61											
	iouro operateu	040						rotarton	14.04	0.01											
C	Cape Production		Ave. (/min)	Permit (/min)	Status				HAPs	TONS/MO											
	Line 1:	42,273,909	839	1,600	OK				Glycol Ethers	0.05											
	Line 2:	28.671.975	569	1,600	OK				Xylene	0.08											
/ +	Line 3:	43,609,418 30,515,184	865	1,600	OK OK				Ethyl Benzene	0.02	-										
	Line 4: Total:	145,070,486	605	1,400	OK				Formaldehyde Methanol	0.46	- \										
	Total.	145,070,480							TOTAL	0.61											
	Basecoated Cans:	79,329,159							TOTAL	0.01		1									
C	Overspray PE (lb/hr)		0.12	1.72	OK																
								1													
	1) Unit Description:	Plant Gas			Calculations for			nption													
	2) Burner Size:	10 19.76	MMbturhr	Emissi	ion factors based on	AP-42 Table 1.4-	1 (rev. 3/98)	Caricalana	Descrit	Otatua											
	 Gas Usage Control: 	None						Emissions (lb/hr)	Permit (lb/hr)	Status		/									
	CO:		MMscf >	(84.0	lb/MMscf /	840.0	hours =		13.02	OK	_ /										
N	NOx:		MMscf >	(100.0	Ib/MMscf /		hours =		15.5	OK	_ /										
	PM:		MMscf >		lb/MMscf /		hours =		1.18	OK	-/										
V	VOC:	19 760	MMscf >	5.50	lb/MMscf /		hours =		0.85	OK	/										
	ling 12-month month			o the permit lin	nits.																
lated value	ing 12-month month Is more than half of exceeds the allowab	the allowable lin		the permit lin	nits.			VOC Emi	issions Per Mon	th										VOC Emissi	ons
lated value lated value	is more than half of	the allowable lin		e the permit lin	nits.				short tons)	th										(sho	rt to
lated value lated value laterial	is more than half of	the allowable lim le limit	nit	Supplier Ma	aterial M	aterial VOC				th										(sho	
ated value ated value aterial eneric	is more than half of exceeds the allowab	the allowable lim le limit	nit		aterial M	aterial VOC ntent (wt. %)	May		short tons) 2019	th August	September	October	November	December	January	February	March	April	Мау	(sho	rt to
lated value lated value laterial seneric scription	is more than half of exceeds the allowab Sofidel Materia	the allowable lim le limit II Supplier	Name	Supplier Ma Identifica	aterial Mi tion Co	ntent (wt. %)		(5	short tons) 2019		September	October	November	December	January	February	March	April		(sho 2	rt toi
lated value lated value aterial eneric scription	Is more than half of exceeds the allowab Sofidel Materia Identification	the allowable lim le limit II Supplier	Name OC Emission	Supplier Ma Identifica Is PER PULP	aterial Mi tion Co	ntent (wt. %) NE (short ton	s):	(s	short tons) 2019 9 July		September 2.40	October 2.44	November 2.33	December 2.16	January 2.05	February	March	April 1.36		(sho 2	rt tor
lated value lated value laterial seneric scription	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo	the allowable lim le limit I Supplier onthly Average V	Name OC Emission = 12-mon	Supplier Ma Identifica as PER PULP th sum of VO	aterial M. tion Co & PAPER MACH	ntent (wt. %) NE (short ton months per ye	s): par 2.23	(s	short tons) 2019 9 July	August					2002/01/02				May	(sho 2 June	rt to
lated value lated value laterial seneric scription	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo	the allowable lim le limit I Supplier onthly Average V	Name OC Emission = 12-mon	Supplier Ma Identifica Is PER PULP th sum of VO Is PER PULP	aterial M. tion Co & PAPER MACH C emissions / 12	ntent (wt. %) NE (short ton months per ye NE (short ton	s): ear 2.23 s):	(s	2019 2010 2010	August					2002/01/02				May	(sho 2 June	rt to
lated value lated value laterial ieneric scription R	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total	the allowable limit le limit Supplier onthly Average V VOC Monthly V	Name OC Emission = 12-mon OC Emission	Supplier Ma Identifica is PER PULP th sum of VO is PER PULP = S	aterial M. tion Co & PAPER MACH <i>C emissions / 12</i> & PAPER MACH Sum of VOC emis	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor	s): par 2.23 s): oth 4.40	(s June 2.29 1.18	short tons) 2019 July 2.31 0.89	August 2.35 0.41	2.40	2.44 1.36	2.33	2.16	2.05	1.88	1.75	1.36	May 0.99	(sho 2 <i>June</i> 0.89 0.00	rt to
lated value lated value laterial seneric scription R Additive	Sofidel Materia Identification Rolling 12-month Mo Total	the allowable limit Il Supplier Inthly Average V VOC Monthly V Solenis	Name Name C Emission C Emission Pre	Supplier Ma Identifica Is PER PULP th sum of VO Is PER PULP = S esstige FB852	aterial Mition Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emiss 7	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00%	s): ear 2.23 s): hth 4.40 2.99	(s June 2.29 1.18 0.79	short tons) 2019 9 July 9 2.31 0 0.89 0 0.44	August	2.40	2.44	2.33 0.01	2.16 1.06 0.80	2.05 1.70 1.20	1.88 2.65 2.39	1.75 1.60 1.20	1.36 0.41	May 0.99 0.00	(sho 2 June 0.89 0.00	rt to
lated value lated value laterial ieneric scription R Additive Additive	Sofidel Materia Identification Rolling 12-month Mc Total 803078 803076	the allowable limit Is limit Supplier Inthly Average V VOC Monthly V Solenis Solenis	Name OC Emission = 12-mon OC Emission Pre Pe	Supplier Ma Identifica Is PER PULP th sum of VO Is PER PULP = S ssstige FB652 from PA8254	aterial Mition Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emiss 7	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00%	s): par 2.23 s): th 4.40 2.99 0.06	(s June 2.29 1.18 0.79 0.06	short tons) 2019 2 3 2.31 4 0.89 0 0.44 5 0.20	August 2.35 0.41 0.20	2.40 0.67 0.51	2.44 1.36 1.20	2.33 0.01 -	2.16 1.06 0.80 0.06	2.05 1.70 1.20 0.11	1.88 2.65 2.39 0.10	1.75 1.60 1.20	1.36 0.41 	May 0.99 0.00 -	(sho 2 June 0.89 0.00 - -	rt to
lated value lated value laterial ieneric scription Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total 803076 803203	the allowable limit Supplier Onthly Average V VOC Monthly V Solenis Solenis Solenis	Name OC Emission = 12-mon OC Emission Pre Pe	Supplier Ma Identifica Is PER PULP Is PER PULP = S Sesslige FB852 Form PA8254 Sooft T0250	aterial M. tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7 IF	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40%	s): par 2.23 s): hth 4.40 2.99 0.06 0.35	(s June 2.29 1.18 0.79 0.06 0.25	short tons) 2019 2 3 2.31 3 0.89 0.44 0.20 0.14	August 2.35 0.41 0.20 -	2.40 0.67 0.51	2.44 1.36 1.20 0.14	2.33 0.01	2.16 1.06 0.80 0.06 0.09	2.05 1.70 1.20 0.11 0.30	1.88 2.65 2.39 0.10 0.07	1.75 1.60 1.20 -	1.36 0.41 - 0.22 0.19	May 0.99 0.00	(sho 2 June 0.89 0.00 - - -	rt to
lated value laterial scription Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mi Total 803076 803076 803076 803076 803078 803076	the allowable limit le limit Supplier onthly Average V VOC Monthly V Solenis Solenis Solenis Solenis	Name OC Emission = 12-mon OC Emission Pre Pre Re	Supplier Ma Identifica is PER PULP ith sum of VO is PER PULP = 5 sestige FB852 fform PA8254 psoft F0250 zosoft 20250	aterial M tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 77	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27%	s): par 2.23 s): th 4.40 2.99 0.06 0.35 0.13	(s June 2.29 1.18 0.79 0.06 0.25 0.08	short tons) 2019 3 3 2.31 3 0.89 0.44 5 0.14 0.11	August 2.35 0.41 0.20 - 0.12 0.08	2.40 0.67 0.51 - 0.04 0.11	2.44 1.36 1.20 0.14 0.01	2.33 0.01 - -	2.16 1.06 0.80 0.06 0.09 0.02	2.05 1.70 1.20 0.11 0.30 0.08	1.88 2.65 2.39 0.10 0.07 0.02	1.75 1.60 1.20	1.36 0.41 - 0.22 0.19 -	May 0.99 0.00 - - - -	(sho 2 June 0.89 0.00 - - - - -	nt toi 020
lated value lated value aterial eneric scription R Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total 803076 803207 803207 803207 803207	the silowable limit I Supplier Inthly Average V VOC Monthly V Solenis Solenis Solenis Solenis	Name OC Emission = 12-mon OC Emission Pre Pre Re Re	Supplier Ma Identifica is PER PULP th sum of VO is PER PULP = 5 sestige FB852 from PA8254 soft TQ250 zosol 8207/IA zosol 8207/IA	aterial M. tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7 4 F	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27% 0.08%	s): ear 2.23 s): bth 4.40 2.99 0.06 0.35 0.13	(s June 2.29 1.18 0.79 0.06 0.25 0.08	short tons) 2019 July a July b 2.31 b 0.89 b 0.44 c 0.20 c 0.11	August 2.35 0.41 0.20 - 0.12 0.08 -	2.40 0.67 0.51 - 0.04 0.11	2:44 1.36 1.20 0.14 0.01	2.33 0.01 - - - - -	2.16 1.06 0.80 0.06 0.09 0.02	2.05 1.70 1.20 0.11 0.30 0.08	1.88 2.65 2.39 0.10 0.07 0.02	1.75	1.36 0.41 - 0.22 0.19 -	May 0.99 0.00 - - - - -	(sho 2 June 0.89 0.00 - - - - - - -	rt to
lated value lated value ieneric scription Additive Additive Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Md Total 803076 8032076 8032076 803197 & 803097 803157 803157	the allowable limit le limit Supplier onthly Average V VOC Monthly V Solenis Solenis Solenis Solenis	Name OCC Emission = 12-man OC Emission OC Emission Pro Re Re So	Supplier Ma Identifica is PER PULP th sum of VO is PER PULP Sestige FB852 from PA8254 soft TQ250 zosol 8207NA zosol 8207NA zosol 8207NA	aterial M. tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7 4 F	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27% 0.08% 0.30%	s): ear 2.23 s): tth 4.40 2.99 0.06 0.35 0.13	(s June 2.29 1.18 0.79 0.06 0.25 0.08	short tons) 2019 2 a July b 2.31 b 0.89 b 0.44 b 0.20 b 0.14 b 0.11	August 2.35 0.41 0.20 - 0.12 0.08	2.40 0.67 0.51 - 0.04 0.11	2:44 1.36 1.20 0.14 0.01	2.33 0.01 - - - -	2.16 1.06 0.80 0.06 0.09 0.02	2.05 1.70 1.20 0.11 0.30 0.08 -	1.88 2.65 2.39 0.10 0.07 0.02	1.75 1.60 1.20 - - -	1.36 0.41 - 0.22 0.19 -	May 0.99 0.00 - - - -	(sho 2 June 0.89 0.00 - - - - - - -	nt toi 020
lated value lated value scription Additive Additive Additive Additive Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total 803076 803203 803197 & 803097 803150 803150	the silowable limit is supplier inthly Average V VOC Monthly V Solenis	Name OC Emission = 12-mon OC Emission Pro Pe Re Re Re Re So So	Supplier Me Identifica is PER PULP th sum of VO is PER PULP = 5 esstige FB852 from PA8254 cosoft T0250 cosoft 20250 cosoft 820714. zosoft C53250 lems DPC710 cobord 1194	aterial M. Con & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7. 4F.	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27% 0.08% 0.30% 0.30%	s): ear 2.23 s): tth 4.40 2.99 0.06 0.35 0.13 - 0.00	(s June 2.29 1.18 0.79 0.06 0.25 0.08	short tons) 2019 2 a July b 2.31 b 0.89 b 0.44 b 0.20 b 0.14 b 0.11	August 2.35 0.41 0.20 - 0.12 0.08 -	2.40 0.67 0.51 - 0.04 0.11	2:44 1.36 1.20 0.14 0.01	2.33 0.01 - - - - -	2.16 1.06 0.80 0.09 0.02 - -	2.05 1.70 1.20 0.11 0.30 0.08	1.88 2.65 2.39 0.10 0.07 0.02	1.75 1.60 1.20 - - - - 0.00	1.36 0.41 - 0.22 0.19 -	May 0.99 0.00 - - - - -	(sho 2 June 0.89 0.00 - - - - - - - - - -	rt to
lated value lated value eneric scription Additive Additive Additive Additive Additive Additive Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Md Total 803076 8032076 8032076 803197 & 803097 803157 803157	the allowable limit is limit Supplier onthly Average V VOC Monthly V Solenis S	Name OC Emission = 12-mon OC Emission Pre Pre Re Re So So So He Pe	Supplier Ma Identifica is PER PULP th sum of VO is PER PULP is PER	aterial M. Con & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7. 4F.	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27% 0.08% 0.30% 0.30% 0.01%	s): par 2.23 s): pth 4.40 2.99 0.06 0.35 0.13 - 0.00 0.87	(s June 2.29 1.18 0.79 0.06 0.25 0.08 	short tons) 2019 2 3 2.31 3 3 4 5 0.44 5 0.14 0.11 - - - 0.00	August 2.35 0.41 0.20 - - - - - - - - - - - - - - - - - - -	2.40 0.67 0.51 - 0.04 0.11 - - 0.00	2:44 1:36 1:20 0.14 0.01 - - 0.00 -	2.33 0.01	2.16 1.06 0.80 0.09 0.02 - - 0.00 0.09	2.05 1.70 1.20 0.11 0.30 0.08 - - 0.00	1.88 2.65 2.39 0.10 0.07 0.02 - - - 0.00 0.06	1.75 1.60 1.20 - - - - - - - 0.00 0.40	1.36 0.41 - 0.22 0.19 - -	May 0.99 0.00 - - - - - - - -	(sho 2 June 0.89 0.00 - - - - - - -	rt to
lated value laterial ieneric scription Additive Additive Additive Additive Additive Additive Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total 803076 803203 803197 & 803097 803150 803150	the silowable limit is supplier inthly Average V VOC Monthly V Solenis	Name OC Emission = 12-mon OC Emission OC Emission Pre Re Re Re Re Re Re Re Re Re Re Re Re Re	Supplier Ma Identifica Is PER PULP Is SPER PULP Is SPER PULP Sessing FB825 (form PA8254 Soft T0250 2008/82071M-2009 (Soft T0250 2008/82071M-2009 (Soft T0250 2008/82071M-2009 (Soft T0250 2008/82071M-2009 (Soft T0250 (Soft T0250) (Soft T0250	aterial M. tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7 4 	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 15.40% 0.27% 0.08% 0.30% 0.01% 25.77% 0.30%	s): par 2.23 s): tth 4.40 2.99 0.06 0.35 0.13 	(s June 2 29 1.18 0.79 0.06 0.25 0.08 - - 0.00 - 0.00 - 0.00	short tons) 2019	August 2.35 0.41 0.20 - - - 0.08 0.00 - - - 0.00	2.40 0.67 0.51 - - 0.04 0.11 - - - 0.00 - 0.00	2.44 1.36 1.20 0.14 0.01 - - 0.00 - 0.00	2.33 0.01 - - - - -	2.16 1.06 0.80 0.06 0.09 0.02 - - 0.00 0.09 0.00	2.05 1.70 1.20 0.11 0.30 0.08 - - 0.00 - 0.00	1.88 2.65 2.39 0.10 0.07 0.02	1.75 1.60 1.20 - - - - 0.00 0.40 0.00	1.36 0.41 - 0.22 0.19 - - - - - 0.00	May 0.99 0.00 - - - - - - - - - - - -	(sho 2 June 0.89 0.00 - - - - - - - - - - - - - - - - -	nt toi 020
lated value lated value eneric scription Additive Additive Additive Additive Additive Additive Additive Additive Additive	Is more than half of exceeds the allowab Sofidel Materia Identification Rolling 12-month Mo Total 803076 803203 803197 & 803097 803150 803150	the sllowable lim ie limit Supplier nnthly Average V VOC Monthly V Solenis Solenis Solenis Solenis Solenis Solenis Solenis Solenis Solenis Solenis	Name OC Emission = 12-mon OC Emission OC Emission Pre Pre Re So So He Pe Pe An Ad	Supplier Ma Identifica is PER PULP th sum of VO is PER PULP is PER	aterial M. tion Co & PAPER MACH C emissions / 12 & PAPER MACH Sum of VOC emis 7 4 	ntent (wt. %) NE (short ton months per ye NE (short ton sions per mor 85.00% 25.00% 15.40% 0.27% 0.08% 0.30% 0.30% 0.01%	s): par 2.23 s): pth 4.40 2.99 0.06 0.35 0.13 - 0.00 0.87	(s June 2.29 1.18 0.79 0.06 0.25 0.08 	short tons) 2019 2019 2.31	August 2.35 0.41 0.20 - - - - - - - - - - - - - - - - - - -	2.40 0.67 0.51 - 0.04 0.11 - - 0.00	2:44 1:36 1:20 0.14 0.01 - - 0.00 -	2.33 0.01 - - - - - - - - - - - - - - - - - - -	2.16 1.06 0.80 0.09 0.02 - - 0.00 0.09	2.05 1.70 1.20 0.11 0.30 0.08 - - 0.00	1.88 2.65 2.39 0.10 0.07 0.02 - - 0.00 0.06 0.00	1.75 1.60 1.20 - - - - - - 0.00 0.40	1.36 0.41 - 0.22 0.19 - -	May 0.99 0.00 - - - - - - - - - - - - - - - - -	(sho 2 June 0.89 0.00 - - - - - - - - - - - - - - - - -	nt toi 020

12

Caution of what not to do:

TAB INSTRUCTIONS	CHANGE THE MONTH AND YEAR IN THE "VOC EMISSIONS MONTH" TAB AT THE TOP. IT WILL POPULATE THE OTHER TABS	PivotTa	ble Fields		*	
		Change Folds	to add to repor		10	\$
	USE THE ZNOP REPORT WITH THE OPTIONS BELOW FOR THE "BACK END" AND DELETE ALL COLUMNS EXCEPT "PRODLINE", "SIZE", "GOOd(EA)" & "Scrap(EA)". INSERT A PIVOT TABLE AS SEEN HERE TRANSFER THE PIVOT TABLE DATA TO THE "SAP PRODUCTION" TAB AND SUMMARIZE AS NOTED. CHECK THE "ALLOCATION BY LINE" TAB TO ENSURE THE VALUES LINKED CORRECTLY. REPLACE IF N		to and to repor	c		8
Children Children	TRANSFER THE PHYOT TABLE DATA TO THE 3AP PRODUCTION TAB AND SOMIMARIZE AS NOTED. CHECK THE ALLOCATION BELINE TAB TO ENSURE THE VALUES LINKED CORRECTLY, REPLACE IF N	Search				
ARMS DATA-CURRENT MONTH TAB	COPY THE ARMS REPORT FOR THE CURRENT YEAR INTO THE MONTHLY FOLDER					
***** CRITICAL->	DELETE ALL MONTHLY COLUMNS EXCEPT THE ONE YOU NEED	ProdLine				
***** CRITICAL>	COPY THE VALUES FROM CELL A1 TO CELL D147 (BUT CHECK) IN THE MONTH COLUMN WHERE YOU NEED DATA AND PASTE "VALUES" ONLY TO CELL A1 IN THE TAB	Size				
	VALUES WILL POPULATE IN THE VOC, PM, CASS & CO2 DATA TABS	Good(
		Scrap(I	A)			
	COPY THE "FORCED USAGE" REPORT FOR THE MONTH FROM 2: PUBLICE and of Month Direct Material Usage 2022 INTO THE CURRENT MONTHLY FOLDER	More Tables.				
	COPY THE VALUES FROM CELL AL TO CELL 090 (BUT CHECK) AND PASTE "VALUES" ONLY TO CELL AT IN THE "FORCED USAGE" TAB					
	VALUES WILL POPULATE IN THE "VOC EMISSIONS MONTH" DATA TAB					
GET RTO DOWNTIMES FROM OMS	RUN DOWNTIME REPORT FOR BOTH RTO'S IN OMS. "HISTORICAL CLIENT", "DOWNTIME MACHINE LOG" PICK ALL SHIFTS, CREWS, FAULT STATES, DATES AND "OXIDZER" UPDATE AND EXPORT					
	DOWNLOAD "DOWNTIME" FILE. AND PUT IN CURRENT MONTH FOLDER.					
***** CRITICAL>	PLACE THE HOURS EACH RTO WAS NOT RUNNING IN THE RTO DATA PORTION OF THE "VOC EMISSIONS MONTH" TAB	D				
		Urag tields d	etween areas be	NOW:		
COPYING VALUES TO GENERATE REPORT	THE FOLLOWING BLUE TABS HAVE SELF-EXPLANATORY INSTRUCTIONS TO COPY & PASTE "VALUES" ONLY WITHIN THE TAB TO MAINTAIN ANNUAL DATA RECORDS	T Filters		II Columns		
	HAPS PER LINE PM EMISSION ALUMINUM			Σ Values		
	PM EMISSION ROMATON			A		
	VOC EMISSIONS					
	CASS GAS USAGE					
CRITICAL->	CO2 - CHG REPORT	= Rows		Σ Values		
STOP - THE REPORT IS COMPLETE	DP Program Edit Goto System Help	ProdLine		Sum of Size		
SAVE AS ("YEAR, 3LTR MONTH, EMISSIONS")	- Trohan Peer Novo - Arean Tab	Size		Sum of G	Jood(EA)	
(E.G. "22 JAN EMISSIONS")	Ø ✓ ≪ 問 @ ○ ② 壹 前他 約 許 局 部 □ □ ◎ 號			Sum of Sci	cram/EA1	
					(approved)	
	Plant operations report					

MONTH:	March	<- CHANGE T	HESE VALUES							
YEAR:										
	(a)	(a1)	(b)	(c)	(d)	(e)	(†)	(g)	(h)	(i)
	COATING USAGE		COATING DENSITY	VOLUME % SOLIDS	CONTENT (Ib VOC/gal	OVERALL EFFICIENCY	EMISSION FACTOR	USAGE		
	(gal)	(lb)	(lb/gal)	(gal/gal)	solids)	-	(Ib VOC/gal)	(lb)	(Ib VOC)	(tons VOC
							(c/100 x d)	(a x b)	(a x f)(1-e)	(g/2000)
INSIDE SPRAY										
20Q53AP (lines 1,2 & 5)	16,614		8.43	18.20	5.80	0.00%	1.056	140,059	17,538	8.77
20Q53AP (line 6)	7,027		8.43	18.20	5.80	13.23%	1.056	59,240	3,873	1.94
20Q53AP (lines 3 & 4)	9,454		8.43	18.20	5.80	13.23%	1.056	79,699	5,211	2.61
20Q53AP (lines 7, 8, 9 & 10)	2,187		8.43	18.20	5.80	8.92%	1.056	18,437	275	0.14
TOTAL	35,283					(278,998	26,622	13.45
CK SUM FROM ARMS	35,283						TONS/MONTH FOR CK SUM	139.50		
PPG 2012823 - BPANI (lines 1,2 & 5)	7,854		8.40	17.70	6.90	0.00%	1.221	65,977	9,593	4.796
PPG 2012823 - BPANI (Line 6)	3,322		8.40	17.70	6.90	13.23%	1.221	27,906	2,118	1.059
PPG 2012823 - BPANI (Lines 3 & 4)	4,469		8.40	17.70	6.90	13.23%	1.221	37,544	2,850	1.425
3 2012823 - BPANI (Lines 7, 8, 9 & 10)	1,034	-	8.40	17.70	6.90	8.92%	1.221	8,685	150	0.075
TOTAL	16,680							140,112	14,711	7.36
CK SUM FROM ARMS	16,680						TONS/MONTH FOR CK SUM	70.06		
OVER VARNISH										
PPG CC3625XLV (lines 1,2, & 5)	7.530		8.75	33.50	2.90	0.00%	0.972	65.887	7.315	3.66
PPG CC3625XLV (line 6)	3,185		8.75	33,50	2.90	0.00%	0.972	27,868	3.094	1.55
PPG CC3625XLV (lines 3 & 4)	4,285		8.75	33.50	2.90	0.00%	0.972	37,492	4,163	2.08
PPG CC3625XLV (lines 7, 8, 9 & 10)	991		8.75	33.50	2.90	11.89%	0.972	8,673	143	0.07

Sources

- <u>https://www.epa.gov/clean-air-act-overview/clean-air-act-requirements-and-history#text</u>
- https://epa.ohio.gov/static/Portals/41/sb/publications/SBAirPermit.pd

July 20, 2023

Amanda Jennings – Managing Consultant

Topics

- Importance of an Emissions Inventory
- Special Considerations for Emissions Inventory
 - Sources to Include
 - Fugitive Emissions
 - Particulate Emissions
- ► Calculation Techniques
 - Guidance Documents
- ► De Minimis Exemption Emissions Calculations

Importance of Emissions Inventory

- ► Exemptions
- ▶ Permits-by-Rule (PBRs)
- ► Express PTIs/PTIOs
- ► General PTIs/PTIOs
- ▶ PTI/PTIO
 - Synthetic minor PTIs & federally enforceable PTIOs (FEPTIOs)
- ▶ PTI with Federal NSR
 - PSD
 - Offset Permit (NANSR)
- ► Title V operating permits

Minor New Source Review (NSR)

Major NSR

Major Source Emissions Thresholds

Pollutant	Title V	Major NSR (Existing Major)
Regulated NSR (NO _X , SO ₂ , VOC, PM ₁₀ /PM _{2.5} , CO, etc.)	PTE: >100 tpy	PTE Attainment Area: >250 tpy (Attainment) >100 tpy (List of 28) PTE Nonattainment Area: >100 tpy (NA pollutants)
Hazardous Air Pollutant (HAP)	PTE: >10 tpy Ind. HAP, or >25 tpy Combined HAP	-

Potential to Emit (PTE) is site-wide, including all air contaminant sources at the facility, even those that are exempt from air permitting in Ohio (i.e., 3745-31-03 exempt, de minimis, & grandfathered)!

Importance of Emissions Inventory

- ► Title V Categories
 - Major
 - Minor
- ► Major NSR Source Categories
 - Existing Minor
 - Existing Major
 - Major Modification
- ► HAP Source Categories
 - Major
 - Area
- Synthetic Minor Avoidance Options!

Importance of Emissions Inventory

- ► Other Air Permitting Programs to Consider
 - Ohio Air Dispersion Modeling Requirements
 - Project-based increases
 - Increase in <u>Allowable Emissions</u>
 - Air Toxics
 - Regulated NSR Pollutants
 - Major or Area Source for Hazardous Air Pollutants (HAP)
 - Based on Potential to Emit (PTE)
 - Generally Available Control Technology (GACT)
 - Maximum Achievable Control Technology (MACT)

Pollutant	Ohio Modeling Threshold (tpy)
PM ₁₀	15
PM _{2.5}	10
NO _X	40
SO ₂	40
CO	100
Air Toxics	1

Special Considerations – Sources to Include

- Include all permitted, grandfathered, permit exempt/de minimis sources in emissions inventory to determine major source status
 - For non-Title V sources, these can be excluded from listing in permit (PTIO) applications
 - For Title V sources, these can be excluded from TV applications only if they have no applicable requirements
- Only trivial sources can be excluded from Emissions Inventory (Title V guidance)

Special Considerations – Fugitive Emissions

- ► Fugitive Emissions
 - Emissions that could not reasonably pass through a stack, chimney, vent, or similar opening.
 - Roadways, aggregate storage piles, equipment leaks from piping components (valves, pumps), quarries

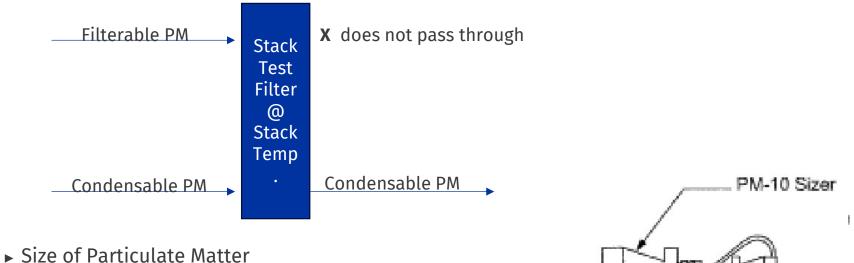
Permitting Program	Include Fugitives?	Exceptions
Title V	No	 Source on List of 28 HAP Major Source Thresholds Source regulated by Pre-Aug 1980 NSPS or NESHAP rule
NSR Major Source Determination	No	 Source on List of 28 Source regulated by Pre-Aug 1980 NSPS or NESHAP rule

Special Considerations – List of 28

Table 1 28 Source Categories		
Coal cleaning plants with thermal dryers	Charcoal production plants	
Portland cement plants	Kraft pulp mills	
Iron and steel mills	Primary zinc smelters	
Primary copper smelters	Primary aluminum ore reduction plants	
Hydrofluoric acid plants	Municipal incinerator capable of charging more than 250 tons of refuse per day	
Nitric acid plants	Sulfuric acid plants	
Lime plants	Petroleum refineries	
Coke oven batteries	Phosphate rock processing plants	
Carbon black plants (furnace process)	Sulfur recovery plants	
Fuel conversion plants	Primary lead smelters	
Secondary metal production plants	Sintering plants	
Fossil fuel boilers (or combination thereof) totaling more than 250 MMBtu/hr heat input	Chemical process plants (does not include ethanol production facilities that produce ethanol by natural fermentation, included in NAICS codes 325193 or 312140)	
Fossil fuel fired steam electric plants of more than 250 MMBtu/hr heat input	Petroleum storage transfer units, total storage capacity over 300,000 barrels	
Taconite ore processing plants	Glass fiber processing plants	

Emissions Inventory – Chemical Plant Example

► Existing Inventory

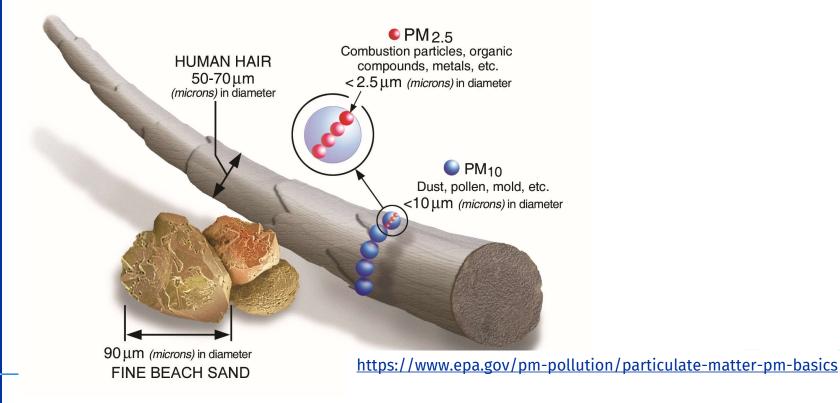

Emissions Unit	NO _x	CO	VOC	Total HAP	Ind. HAP
Boiler #1	42.5	36.0	2.3	0.8	0.7
Process Line #1	-	-	52.0 TV & NSR	12.0	6.0 НАР
Total	42.5	36.0	54.3 Minor	12.8	6.7 Area

- ▶ Project
 - Install a duplicate second line, that doubles capacity
- ► Site-wide Potential Emissions After Project

Emissions Unit	NO _X	СО	VOC Title V	Total HAP	Ind. HAP Title
Total	85.0	72.0	108.6 Existin g Major	25.6	13.4 V & MACT

Special Considerations – Particulate Emissions

- ► Types of Particulate Matter
 - Filterable vs. Condensable



PM-2.5 Sizer

- Filterable PM10 vs. Filterable PM2.5
 - Less than or equal to 10 microns; less than or equal to 2.5 microns

Special Considerations – Particulate Emissions

► Particulate Emissions

Special Considerations – Particulate Emissions

Types of PM	Description	EPA Test Method	How is it Regulated?	Other Considerations?
Filterable PM	Solid/liquid particles at the stack/filter temperature	5, 17	Ohio SIP (3745-17)NSPSMajor NSR	Fee Emissions Report (FER)
Condensable PM	Vapor or gas at stack conditions that condenses immediately after stack discharge, all PM _{2.5}	202	Not independently regulated	FER
PM ₁₀	PM with aerodynamic diameter <10 microns, includes condensable PM	201A	Title VMajor NSR	Calculate Filt. PM ₁₀ Portion for FER
PM _{2.5}	PM with aerodynamic diameter <2.5 microns, includes condensable PM	201A	Title VMajor NSR	Calculate Filt. PM _{2.5} Portion for FER

Emission Calculation Techniques

- Always use the most representative approach!
- Stack tests or CEMS data
 - Best if normalized to produce emission factor (e.g., lb/ton or lb/MMBtu)
- Mass balance
 - Typically used for coating and solvent use operations
 - Typically assume 100% of organics emitted or directed to control device
- Vendor Guarantees
 - For example, outlet grain loading for dust collector (gr/dscf) or lb/MMBtu for boiler or heater
 - Generally based on testing of similar equipment
- Emission factors
 - Provide emissions in mass per unit production basis that can be scaled to different throughputs (e.g., lb/MMBtu, lb/ton)
 - AP-42 (<u>https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors</u>) & WebFIRE (<u>http://cfpub.epa.gov/webfire/</u>) are most common EPA references containing emission factors

Emission Calculation Tools

- ▶ Storage Tank Calculations
 - AP-42 Chapter 7.1 last updated in 2020
 - Includes Landing/Cleaning
 - Software Options TankESP
- Wastewater Treatment Processes
 - Toxchem
 - U.S. EPA Water9
- ▶ Batch Emission Calcs
 - Software Options Emission Master
- ▶ Other (e.g., Oil & Gas, Chemical)
 - ChemCAD
 - ProMax

BR&E Bryan Research & Engineering, LLC

Emission Calculation Guidance

- ► U.S. EPA provides guidance for emission calculations for:
 - Emergency generators
 - Grain handling
 - Batch chemical operations
 - Fugitive equipment leaks
 - Paint, ink, coating manufacturing
 - Petroleum refineries
 - Surface coating, etc.
- Ohio EPA Engineering Guide #80 Methods for calculating PTE <u>https://epa.ohio.gov/divisions-and-offices/air-pollution-control/guides-and-manuals/engineering-guides-notebook</u>

Calculating Emissions for De Minimis Exemption

- ▶ OAC 3745-15-05 *De minimis* Exemption Rule
 - *De minimis* sources are exempt from all OAC requirements (permitting, emission limits, etc.)
 - No ongoing recordkeeping outside of PTE calculation
 - De minimis does not exempt from federal rules
 - Can be excluded from Title V Applications
 - Must be included in major source determinations (TV, NSR)
 - OAC 3745-15-05(B) *De minimis* exemption based on Potential to Emit (PTE)
 - Exempt, unless PTE exceeds ten pounds per day of any air contaminant

Key De Minimis Source Terms

Potential-to-emit or potential emissions – the amount of emissions of an air contaminant, <u>based on maximum rated</u> <u>capacity</u>, which would be emitted from a source during a <u>twenty-four hour calendar day</u> or calendar year basis, whichever is applicable, if that source were operated <u>without the use of air</u> <u>pollution control equipment</u> unless such control equipment is, aside from air pollution control requirements, necessary for the facility to produce its normal product or is integral to the normal operation of the source. [3745-15-05(A)(6)]

• Integral control will typically be material recovery device

- Use of control device interlock/kill switch see Eng. Guide #80
- De minimis PTE = 24 hr/day and 8,760 hr/yr operation at max hourly capacity without air pollution controls!

De minimis Exemption

- ► De minimis exemption **DOES NOT** apply if:
 - Total Hazardous Air Pollutant (HAP) potential emissions more than one tpy
 Delutant Delutant Delutant
 - Example, EU is *not* de minimis:

Daily PTE	Annual PTE
8 lb/day	1.46 <u>tpy</u>
5 lb/day	0.91 tpy
3 lb/day	0.55 tpy
	8 lb/day 5 lb/day

*HAP = hazardous air pollutant

- A CAA or SIP regulation limits unit to (or restricts operation in a manner equivalent to a limit of) less than ten lbs/day (e.g., MACT, GACT, NSPS, SIP)
- The source alone or in combination with similar sources at the facility has potential emissions exceeding twenty-five tpy

Key De Minimis Source Terms

Similar sources are:

- Sources for which construction and operation are essentially the same, although, the capacity of each source is not necessarily the same;
- Sources in which the physical or chemical process occurring in each source is essentially the same; and
- Sources from which essentially the same air pollutants are emitted.

Questions?

Amanda Jennings - ajennings@trinityconsultants.com

440 Polaris Parkway, Suite 275 Westerville, OH 43082 (614) 433-0733

BAT/Synthetic Minors Workshop J July 20, 2023

Andrew Hall Permitting Manager Division of Air Pollution Control 614-644-3602 Andrew.Hall@epa.ohio.gov

Topics • Determining Best Available Technology (BAT) • BAT Cost-Effectiveness Studies • Understanding Synthetic Minors 3 **Ohio Enviror Protection Agency** 7

BEST AVAILABLE TECHNOLOGY

What is BAT?

- Ohio Administrative Code (OAC) 3745-31-05
- Required new or modified sources to install Best Available Technology to control emissions
- Idea is to install controls on new sources more cost effective than to retrofit old
- Requires installation of state-of-the-art controls taking into account costs
- Does not apply to <10 ton/yr sources

What is BAT?

- A combination of work practices, raw material specifications, throughput limitations, source design characteristics, or add-on controls
- Control technique must have been used in Ohio or other similar states
- Costs are taken into account
- Definition:

40

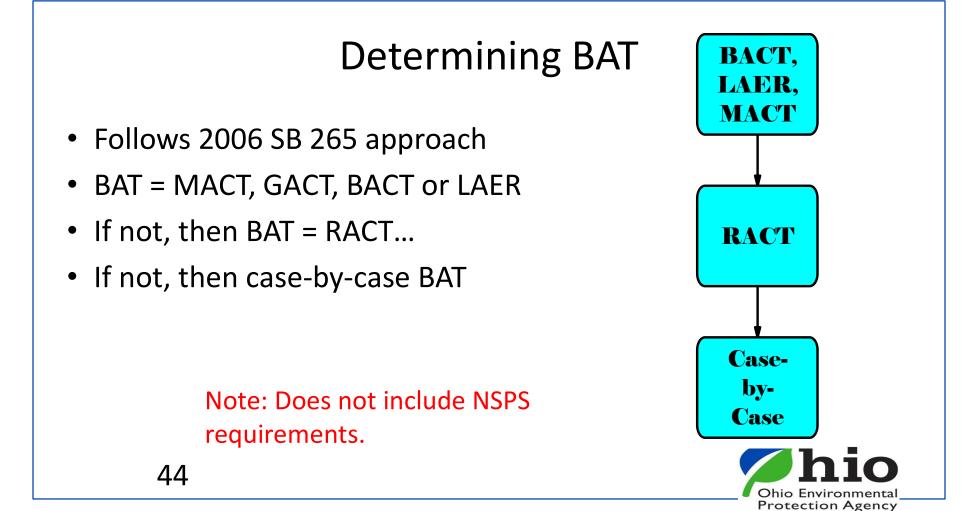
"Best available technology" or "BAT" means any combination of work practices, raw material specifications, throughput limitations, source design characteristics, an evaluation of the annualized cost per ton of air pollutant removed, and air pollution control devices that have been previously demonstrated to the director of environmental protection to operate satisfactorily in this state or other states with similar air quality on substantially similar air pollution sources.

Practical Selection Advice

- Look at recently issued permits for similar sources.
- Exclude "serious" non-attainment areas like California, some east coast
- Permit contact can help you find permits
- If no control is required BAT is typically based on equipment design

Practical Selection Advice

Emissions Range (Ton/yr)*	Practical BAT Approach
<10 ton/yr	No BAT required
10 ton/yr to about 80 ton/yr	BAT most frequently based on similar sources. Cost effectiveness not typically needed. Ohio EPA most often looks at similar sources to determine if your requested BAT is acceptable.
> 80 ton/yr	Similar sources give good direction but sometimes need case-by-case analysis/cost effectiveness. See Engineering Guide #89. Check w permit writer. BACT or LAER apply? Then BAT is equivalent to BACT/LAER.

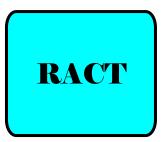

*There is no hard and fast rule on these ranges except for the <10 ton/yr no BAT needed rule. So, take these with a grain of salt.

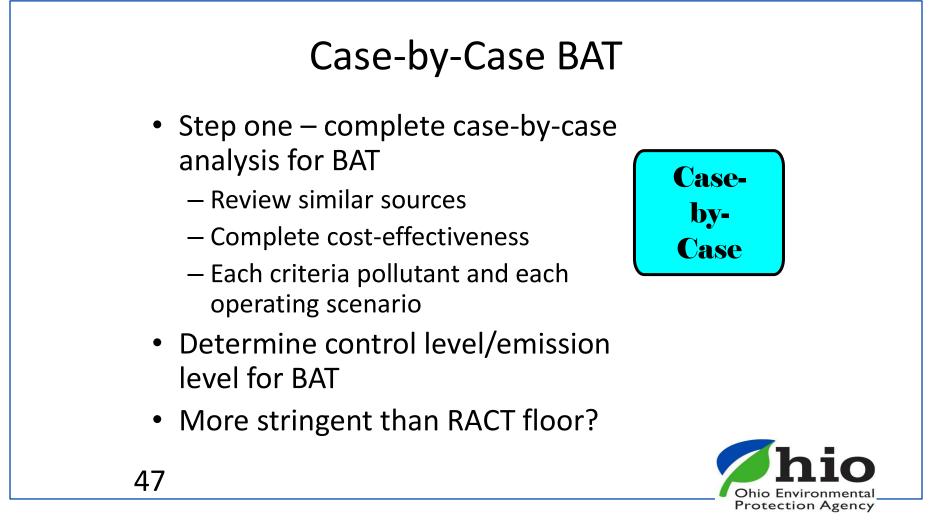
What Does the Law Say?

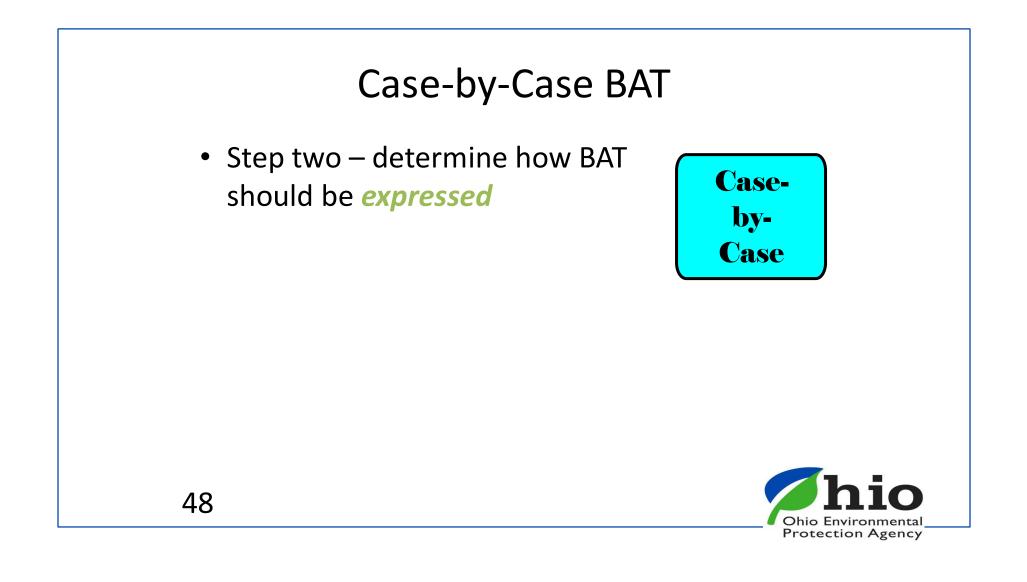
- Guidance on selecting BAT
- Issued revised guidance February 7, 2014
- http://epa.ohio.gov/dapc/sb265.aspx
- Significant changes for new or modified after August 3, 2009

How do you determine BAT?

- Check each pollutant separately
- Check to see if MACT, GACT, BACT, LAER applies
- If so, then establish BAT
- If not, then review RACT rules






RACT Rule Review for VOC

- Review 01/01/06 version of Chapter 21 for VOC limits
- VOC limits apply anywhere in the state to the same size and type of source?
- If so, then find most stringent, establish limit as BAT floor for VOC
- Then move on to case-by-case approach for VOC

SB 265 Expression Options

- Must express BAT using one of the four options:
 - Work Practice
 - Source Design Characteristic/Design Efficiency
 - Raw Material/Throughput
 - Monthly Allowable

Work Practices

- Most will be description of work practice or implementation of a work practice plan
- No opacity, no ton/yr
- Few will be traditional opacity only if company wants

Source Design/Design Efficiency

- Applies when source/control was designed to limit a particular pollutant
- Short term appropriate but:
 - No emission limit in permit
 - Only "designed for" approach
- BAT = "Install a baghouse designed to meet 0.03"

Source Design/Design Efficiency

- Larger sources... can do initial test
- No ongoing emission limit obligation
- Will need to maintain per manufacture's recommendations
- Will need to maintain records on maintenance
- OAC/other rules provide short-term backup
- U.S. EPA has concerns...

Raw Material Specifications or Throughput Limitations

- Typical of part of synthetic minor limitations
- "45.6 tons of steel processed per rolling twelve-month period"
- No lb/hr, ppm, etc. for BAT... may need these for synthetic minor, however
- This format not used too often for BAT

Monthly Allowable

- Similar to synthetic minor limitations
- "3.2 tons VOC/month averaged over a 12-month rolling period"
- Old way: 38.4 tons VOC/rolling 12-month period
- Overall restriction ends up the same but just described differently

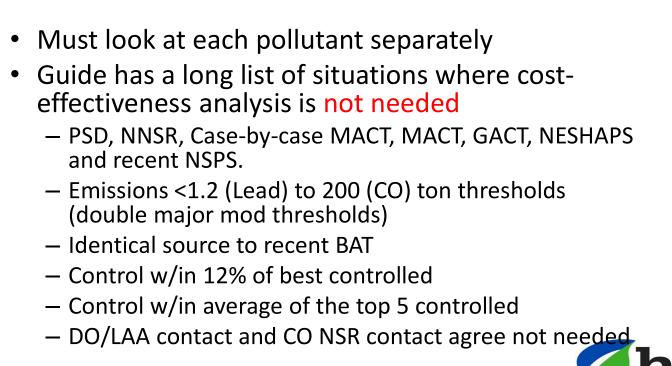
Monthly Allowable

- Will need monitoring, recordkeeping and reporting
- No lb/hr, ppm etc. short-term limits
- OAC/other rules provide short-term

BAT COST-EFFECTIVENESS STUDY

What is BAT Cost-Effectiveness?

- Cost analysis to determine which control technique is appropriate
- Looks at available control techniques
- Looks at control efficiency, cost of each technique
- Results in annualized \$/ton of pollutant reduced
- \$/ton too high? technique eliminated



Cost-Effectiveness for BAT

- Engineering Guide #89 describes approach
 - https://epa.ohio.gov/static/Portals/27/engineer/eguides/89BATCost
 EffectivenessStudy.pdf
- Before you do the work, check with permit contact to see if it is needed
- For many sources control requirement is "obvious" based on other permits

Cost-Effectiveness for BAT

Protection Agency

Cost-Effectiveness for BAT

- Guide narrows down needed cost-effective studies
- Practically means larger sources that don't trip other regs
- Guide also has cost-effectiveness study checklist identifies information needed

What \$/ton is too high?

- No set value
- Value can be different depending upon the type and size of source, the type of pollutant.
- We look at similar size and type of source
- Look at U.S. EPA's RACT/BACT/LAER database for costs of similar sources. See:
 - <u>https://www.epa.gov/catc/ractbactlaer-clearinghouse-rblc-basic-information</u>

SYNTHETIC MINORS

What is a Synthetic Minor?

- Synthetic minors are restrictions put in permits to keep you below rule applicability thresholds.
- Typical rule threshold based on ton/year potential to emit value
- Synthetic minor restrictions are designed to limit the potential emissions, so you are below the rule threshold.

Synthetic Minor

- Legally and practically enforceable
- Must have appropriate limit, monitoring, record keeping, reporting and testing
- Must limit some process, not just emissions
- U.S. EPA 1989 guidance on limiting potential to emit: <u>https://www3.epa.gov/airtoxics/pte/june13_89.pdf</u>

Simple Example

- Painting, Inc.
- Wants to install new paint booth.
- Actual emissions 20 tons VOC/yr
- Potential emissions 50 tons VOC/yr

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC</u>

- PSD threshold 40 tons VOC/yr
- Because potential >40 tons VOC/yr, PSD
 applies

- Painting, Inc. agrees to restrict their emissions to <35 tons VOC/yr
- How do you set up the synthetic minor?
 - Must restrict process variable use gallons of paint, VOC content (3.5 lbs VOC/gallon paint)
 - 35 tons VOC/yr *2000 lbs/ton = 70,000 lbs VOC/yr
 - 70,000 lbs VOC/yr * 1 gallon paint/3.5 lbs VOC = 20,000 gallons paint/yr

- Can't have an annual restriction
- U.S. EPA says waiting a year to see if you are in compliance is too long.
- Instead, daily or monthly is ok.
- So, limits are typically set up as monthly limits or rolling 12month limits where compliance is checked each month.

- 20,000 gallons/yr * 1/12 = 1667 gallons/month
- 35 tons VOC/yr * 1/12= 2.92 tons VOC/month
- Synthetic minor limit:

- 1667 gallons paint/month; 2.92 tons VOC/month; 3.5 lbs VOC/gallon

- These will be put in the permit

- Could be a rolling 12-month limit
- 20,000 gallons per rolling 12-months
- Each month must calculate last 12 months
- Need an initial table:

	Months	Gallons Allowed
	1	1667 gallons
	1-2	3334 gallons
	1-3	5001 gallons
	Etc	
6		
٥		

- Permit includes:
 - Syn Minor limits
 - Monthly records on amount of paint used, VOC content
 - Submit report monthly, quarterly, semi-annual or, perhaps, annual

When Not to Get a Synthetic Minor

- Synthetic minors add restrictions, monitoring, record keeping, reporting and testing
- These restrictions better or worse that just complying w the rule?
- Don't accept synthetic minors that restrict production too much.
- Relaxing synthetic minors need permit actions and time

What Rule Cites will you See?

• OAC rule 3745-31-05 (D), (E), and (F)

Paragraph	Purpose
(D) Synthetic Minors	Standard rule cite for synthetic minors. Rule describes when it can be used and describes what needs to be in a synthetic minor. Can also be used to establish restrictions to support federally enforceable requirements.
(E) State-only enforceable limitations	Designed to establish a limitation on a State-only requirement. For instance, air toxics requirements are State-only enforceable. Want to avoid air toxics modeling? Establish a State-only restriction <1.0 ton/yr for toxic. May not need fully synthetic minor terms.
(F) Voluntary limits on allowable emissions	Non-synthetic minor restrictions the company wants. For instance, company agrees to some restriction through orders w U.S. EPA but not required by rule.

What Rule Cites will you See?

- EG #86 talks about the use of each rule cite.
- If you are not sure why a particular cite was used, talk to your permit writer.

Wrap-up

- U.S. EPA limiting PTE -<u>https://www3.epa.gov/airtoxics/pte/june13_89.pdf</u>
- Ohio EPA EG #80 -<u>https://epa.ohio.gov/static/Portals/27/engineer/eguides/guide</u> <u>80.pdf</u>
- DAPC Web <u>https://epa.ohio.gov/divisions-and-offices/air-pollution-control</u>
- Questions?

Biographical Information

Tracie Sorvillo Senior Environmental Engineer Ardagh Metal Packaging North America , Columbus, Ohio 740.601.3214 tracie.sorvillo@ardaghgroup.com

Tracie Sorvillo is a Senior Environmental Engineer at Ardagh Metal Packaging NA, headquartered in Chicago, IL. She supports all ten United States Aluminum can manufacturing plants in Clean Air Act, Clean Water Act, SARA, Waste permitting, and compliance. AMP has three Aluminum can manufacturing plants located in the Northwest Ohio area. She has degrees in Chemical Engineering, Information Technology and obtained her MBA from The Ohio State University. Tracie has permitted and managed both Title V and non-Title V air permits during her 15 years of environmental health and safety work. She has been part of starting up a new state-of-the-art aluminum can manufacturing facility and creating environmental compliance tracking data analytics for all NA facilities.

Amanda Jennings, Managing Consultant Trinity Consultants, 440 Polaris Parkway, Suite 275, Westerville, Ohio 43082 614.433.0733

ajennings@trinityconsultants.com

Amanda Jennings is a Managing Consultant in Trinity's Westerville, Ohio, office and provides air quality support for several industries in Ohio, including but not limited to, petroleum refining/distribution, chemical manufacturing, surface coating, asphalt processing/shingle manufacturing, and fiberglass and foam insulation manufacturing. She graduated from Ohio University with a Bachelor of Science Degree in Chemical Engineering. Amanda has completed numerous projects over her 18 years of consulting experience ranging from minor and major source state construction permit to install (PTI) or permits to install and operate (PTIO) applications, Fee Emissions Reports (FERs), emissions inventories, Toxic Release Inventory Reports (TRIs), Title V operating permit renewal and modification applications, MACT and GACT general consulting/compliance assistance, and regulatory applicability analyses. Also, she routinely teaches Trinity's *Strategic Air Permitting in Ohio* training course.

Andrew Hall Manager, Division of Air Pollution Control Ohio Environmental Protection Agency, Central Office 614-644-3602

Andrew.Hall@epa.ohio.gov

Andrew Hall became Manager of the Permitting Section of the Ohio EPA, Division of Air Pollution Control (DAPC) in January 2006. His current duties include overseeing the permitting staff in the DAPC Central Office as well as providing technical and permit-related guidance to Ohio EPA field office permit writers. Andrew provides key technical guidance and oversight of Title V permits and major NSR permits issued by the division. Andrew led the team responsible for the initial development of the combined permit-to-install and operate (PTIO) program to it's successful implementation. Andrew graduated in 1993 from the University of Cincinnati with a BS in Chemical Engineering and enjoys yoga, triathlon (swim/bike/run) and paddleboarding.